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Transpiration and natural convection : 
the vertical-flat-plate problem 

By J. F. CLARKE 
Department of Aerodynamics, Cranfield Institute of Technology, Bedford. 

(Received 30 June 1972) 

A study is made of the natural convective flow which is induced in an infinite 
expanse of gas by the presence of a vertical hot flat plate from which hot gas of 
the same chemical type is being blown. The transpiration rate is assumed to be 
such that a self-similar boundary-layer type of solution is available. It differs 
from previous analyses in the following respects. Most important, the density is 
not assumed to be constant a t  any stage in the description of the flow field. Also 
the form of the induced flow in the outer domain is calculated and proves to be 
substantially independent of the blowing rate in this case; the induced outer flow 
is found to be of large lateral extent. Finally, the variable-gas-property problem 
is carried to second order and solutions are obtained by using an ‘exact ’ form of 
Howarth-Dorodnitsyn variable. The opportunity is taken t o  make some com- 
ments about the comparison between theory and experiment for finite flat plates 
without transpiration. 

1. Introduction 
Previous solutions of the effects of mass transfer on the natural convective 

motion past a heated vertical flat plate have been given by Eichhorn (1960) and 
Sparrow S: Cess (1961). Eichhorn examined similarity solutions in the context 
of a boundary-layer theory (essentially the large-Grashof-number case) while 
Sparrow & Cess gave an approximate boundary-layer analysis for the non-self- 
similar situation which arises when both the plate temperature and transpiration 
rate are constant. The latter problem has very recently (while the current work 
was being written up, in fact) been taken up again by Merkin (1972). All these 
writers make the assumption that the density of the convected material is con- 
stant everywhere except in the momentum-equation forcing term which drives 
the natural convective motion, and additionally confine themselves to  the first- 
order boundary-layer approximation. 

When temperature variations in a gas are of substantialamplitude the constant- 
density approximation is poor, and it is a prime purpose of the present article to 
retain the density variations in full. Note too that attention is here confined t o  
transpired and ambient gases of the same chemical type. Furthermore, it is 
intended to proceed to a higher level of approximation in large-Grashof-number 
theory and in this way to investigate the slow flow which is induced in the outer, 
inviscid, constant-temperature domain, as well as the important effects which 
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this outer flow itself induces in the inner, boundary-layer-like, region. The 
opportunity is taken to make come comments about the present second-order 
results for a semi-infinite flat plate and the available theoretical and experimental 
results for the impermeable finite chord surface. 

The original motivation for the present work was a desire to know something 
about the interaction between combustion and natural convection, where density 
and temperature variations will undoubtedly be very large. The transpired gas in 
such a case reacts chemically with the external atmosphere and it is hoped to 
report progress on this more complex problem a t  a later date. 

2. Conservation equations 
With the assumptions of constant specific heat and low Mach number (e.g. 

< 10-2) the set of conservation and thermodynamic equations for a steady two- 
dimensional natural-convective system takes the form 

pe=  1. ( 5 )  

The variables in this set of equations are all dimensionless, as follows: the gravi- 
tational acceleration g is directed along the negative-x axis and, together with 
some suitable length scale L, makes up a typical speed U such that 

u = (gL)$;  (6) 

the velocity components u and w,  directed along the x and z axes respectively, are 
measured in units of U ,  while x and z themselves are measured in units of L; the 
dimensional density is found by multiplying the no-flow density po (assumed 
constant) by the number p ;  the $ow-induced pressure changes are given by 
po Uzp and the absolute temperature is equal to Toe, where To is the constant no- 
flow temperature; p and h are the dynamic viscosity and thermal conductivity 
measured in units of the constants po and A,, which are the no-flow viscosity and 
conductivity, respectively; Pr is the usual Prandtl number and e is the reciprocal 
square-root of the Grashof number, i.e. 

e = ( G r ) b ,  Gr = p:L3g/pE. (7) 

Generally speaking the Grashof number is large and it is with this case that we 
are exclusively concerned here. 
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FIGURE 1. Geometric arrangement and boundary values. 

Figure 1 is a sketch of the geometric arrangement and also exhibits the requisite 
boundary-value information. It is advantageous to introduce a stream function 
@ which is defined so that 

p u  = a$/ax, PW = -a$lax, 
and which thereby ensures that (1) is satisfied. 

3. Outer solutions: first estimates 
It is possible to identify an outer domain Do (namely 1x1 + 0, all x) in which the 

outer limit ( E +  0; x, x fixed) operates and within which the dependent variables 
have asymptotic representations 

where f is equal to p, 8, u, w, $ or p ,  as is appropriate. 
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The first outer solutions are as follows : 

gj)l)(e) = 1, 8(1)(x,z) = 1 ; (10) 

g'p)(s) = 1, p"'(x,z) = 1;  (11) 

(12) 

No values for the first significant gauge or coefficient functions for u, w, y2 orp can 
be found until the non-uniformities which exist as a result of the failure of B to 
meet the boundary conditions on 0 and w have been resolved. 

gy)(e) = o( 11, f = u, w, y2 or p .  

4. Inner solutions: first terms 

x and 2, the latter being defined so that 
The inner domain Di is x > 0 with 121 -+ 0 as e-+ 0; with the inner co-ordinates 

z = Z € d ,  ( 1 3 )  

application of the inner limit (e-t 0, x and 2 fixed) permits construction of inner 
asymptotic series 

M 

n= 1 
f ( ~ ,  X: B )  = C G ~ ) ( E )  F(")(x, 2) + 0(GjM)), (14)  

wherethefunctionFisO,R, U ,  W,Y orPwhenfisB,p,u,w,~orp,respectively. 
It readily follows that the first inner gauge functions which permit matching 
with the outer solutions are 

G ~ ) ( E )  = 1, f = B , P , u ;  GF)(e) = €4, f =  w,$; GF)(e) = ~ ( l ) ,  f = p .  (15) 

The coefficient functions F(l) for the case of a plate of constant temperature, 

O,,(x) = A, 
are found from the similitudes 

and C is the Chapman-Rubesin factor (i.e. a mean constant value of the product 
pp; if the viscosity and thermal conductivity are proportional to temperature, Cis 
equal to unity). The reduced stream function F and reduced temperature H 
satisfy the pair of simultaneous nonlinear ordinary differential equations 

.F" + 3FF" - 2 P  + H = 0, (21) 

H"+ 3PrFH = 0, ( 2 2 )  

where a prime denotes differentiation with respect to the similarity variable 7. 
The boundary condition satisfied by H is evidently 

H ( 0 )  = 1 (23) 
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and matching of solutions in the overlap region of Do and Di leads to the require- 
ment H(7 --f a) 3 0. (24) 

The x component of the velocity in Dt can be found, with the aid of (8), (14), 
(15), (17)) (19) and (20)) from the result 

Tic’) = (8’P(1)/8Y)z = (4Ax)*3”(7), 

so that the no-slip condition makes 

P’(0) = 0. 

To a first approximation the value of pw in Di is given by 

(25) 

When z, 2 and Y all approach zero the final term in (26) vanishes and so the 
boundary condition on pw as z 4 0 makes 

&(x) = - [aY(l)(X, o)/ax],. 

(ayP(yax), = c*(h/4x)B ( 3 ~ ( 7 )  -$qq)) ,  

However, (17) shows that 

whence it follows that h ( x )  = - 3C*(A/4x)*F(O). (27) 

If the similitude expressed in (17)-(20) is to be preserved, (27) shows that h ( x )  
must be proportional to x b ;  choosing 

h ( ~ )  = C+(A/4x)fM, (28) 

where X i s  a ‘mass-flux’ constant, (27) and (28) show that the boundary condition 
for P is 3P(O) = - M .  

Matching the u component of velocity yields the final condition, 

F’(r+CO)+O, (30) 

and completes the specification of the first inner problem. When M is zero this 
reduces to the classical natural convection probIem, for a detailed discussion of 
which one may consult the work of Ostrach (1964) or the subsequent review by 
Ede (1967); present attention will be confined to the case M > 0. 

It can be shown by elementary reasoning that any solutions of 2 1 and 22 which 
satisfy conditions (23), (24), ( 2 5 ) ,  (29) and (30) must be such that H ( 7 )  and F’(7) 
approach zero exponentially in the limit as 7 grows without bound; also F must 
tend to a positive finite limit F(m) with F(co)-F(y-+c~) approaching zero 
exponentially. 

5. Numerical inner solutions 
Solution of the problem presented by (21) and (22) is complicated by the two- 

point boundary conditions, which make it necessary to guess both F“(0) and 
4 FL.M 57 
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FIGURE 2. The velocity function F’(7) [see equation (25)] versus 7 [see equation (19)] 
for various values of the blowing constant M [see equation (as)]. P’(rFc0) is the locus of 
F’ on the dividing streamline. 

H‘(0) in such a way as to satisfy (24) and (30); the fact that the last pair of con- 
ditions are to apply in the limit as y + 00 is an additional complicating factor. 
Two distinct techniques have been applied in order to arrive a t  the desired solu- 
tions: the first takes note of the existing solution for M = 0 and uses the method of 
parametric differentiation (described by Ruppert & Landahl 1967) to extend this 
into the domain M > 0; the second technique, due to Nachstheim & Swigert 
(19654, adjusts the initial guesses for P”(0) and H’(0) so that a sum of the mean- 
square errors between the computed variables and the asymptotic values is 
minimized. The first method makes heavy demands on computer space as a 
result of its requirement of full details of the behaviour of F ,  P‘, etc. for some 
initial value of M ;  the second method, being basically iterative, occupies more 
computing time for a given iM value than the first method. In  the range of values 
of M for which the methods have been compared (namely 0 < M < 3) there is no 
significant disagreement of predictions a t  the lower end of the range; at  the larger 
walues of M discrepancies between results from the two methods do occur and, 
even though these are not of a radical kind, the Nachtsheim & Swigert least- 
square-error technique is to be preferred; the latter procedure has been used to 
carry the computations as far as M = 8 in steps of 0-5. Some typical results for 
F’(7) and H(y) are given in figures 2 and 3 and tables 1 and 2 .  There is substantial 
agreement with the functions calculated by Eichhorn (for example, the curves for 
M = 3 are indistinguishable on the scale of the figures; no table of values of F’ 
and H is given by Eichhorn) but the present results go somewhat further and 
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FIGURE 3. Dimensionless temperature difference H ( q )  versus q for various values of the 
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11 M = O  

0 0 
0.4 0.1962 
0.8 0.2708 
1.2 0.2668 
1.6 0.2238 
2.0 0.1699 
2.4 0.1207 
2.8 0.0818 
3.2 0.0537 
3.6 0.0344 
4.0 0.0216 
4.4 0.0134 
4.8 0.0083 
5.2 0.0051 
6.0 0.0018 
6.8 0-0007 
7.6 0.0002 
8.4 0~0001 
9.2 0~0000 

10.0 0~0000 

M = 3  

0 
0.1283 
0.2489 
0.3553 
0.4382 
0.4863 
0.4909 
0.4527 
0.3833 
0.3010 
0.2220 
0,1558 
0.1053 
0.0691 
0.0282 
0.0109 
0.0041 
0.0015 
0.0005 
0~0002 

TABLE 1 

M = 6  

0 
0.0665 
0.1326 
0.1979 
0.2622 
0.3250 
0.3859 
0.4442 
0.4916 
0.5444 
0.5763 
0.5838 
0.5576 
0.4965 
0.3167 
0.1595 
0.0693 
0.0277 
0.0105 
0.0039 

7 
0 
0.4 
0-8 
1.2 
1.6 
2.0 
2.4 
2-8 
3.2 
3.6 
4.0 
4.4 
4-8 
5.2 
6.0 
6.8 
7.6 
8.4 
9.2 

10.0 

H ( 7 )  
A 

\ 

M = O  M = 3  M = 6  

1 1 1 
0.7988 0.9952 1 
0-6059 0.9843 1 
0.4350 0.9606 1 
0-2969 0.9148 1 
0.1945 0.8373 0.9998 
0.1235 0.7255 0.9993 
0.0767 0.5889 0.9974 
0.0469 0.4470 0.9912 
0-0284 0.3189 0.9744 
0.0171 0.2163 0.9362 
0.0103 0.1412 0.8646 
0.0061 0.0896 0.7543 
0.0037 0.0558 0.6145 
0.0013 0.0210 0.3317 

0.1451 0.0005 0.0077 
0.0002 0.0028 0.0566 
0~0000 0~0010 0.0210 
0~0000 0.0003 0.0076 
0~0000 0~0001 0.0027 

TABLE 2 
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deal, too, with larger values of M .  Figure 4 illustrates results for a number of 
interesting special values. From the definitions of t,h in ( 8 ) ,  2 in (13) and various 
results in (15)-(20) it  follows that 

UJ(l) = 'Y$) = (4Ax)*F'(7), (31) 

Thus, referring again to figure 4, FL,, indicates how the maximum velocity 
parallel to the plate at a fixed x increases with increasing mass flux through the 
plate. Equation (32) shows that P"(0) is proportional to the skin friction a t  the 
plate and figure 4 shows that, even though it does diminish with increasing 
transpiration rate, the skin friction is still far from zero, even a t  M = 8. It would 
appear to be quib difficult to 'blow off' the present natural-convective shear 
layer. Equation (33) shows that H'(0) is proportional to the rate of heat conduction 
at  the solid surface, which, since H'(0 )  < 0, is from the plate to the gas in all 
circumstances. Figure 4 makes it very clear that this heat-conduction rate 
diminishes dramatically with increased transpiration rate; a t  an M of 3.5, H'(0)  
has the value 2-1 1 x and this has fallen to 2.441 x 10-ll when M is equal to 8. 
The wide (in terms of 7) region of gas a t  a nearly constant temperature which 
occurs a t  the higher transpiration rates is evident from figure 3. 

The gas which is injected through the surface of the plate is all convected into 
the space between the plate and the line which is the locus of F(7)  equal to zero; 
the value of 7 which makes B' vanish is defined to be qFZO and its variation with M 
is indicated in figure 4. The shape of the dividing streamline in the inner domain 
which separates transpired gas from the gas which is convected naturally from 
the exterior regions is therefore given by (19) in the form 

Y = C*A-4(4~)*7~=,,, (34) 

and one must remember that Y itself is a function of 2 and x through (20). It is 
convenient hereafter to refer to the flow in 0 6 7 < rFCO as the interior flow and 
to that in 7F=o < 7 as the exterior flow. It is observed from (22) that 7F=0 is the 
location of the inflexion point in the H(7)  curves. 

The value to which F tends in the limit as 7 -+ co, namely F(co), is indicative of 
the mass of gas which, up to any given x location, is entrained from the exterior 
regions of the flow field by the natural convective processes [see equation (17)]. 
Figure 4 shows the interesting fact that P(co) is practically independent of the 
transpiration rate in this constant-plate-temperature, self-similar configuration. 
The establishment of a mass flux of gas is encouraged by heating of the fluid and 
inhibited by the no-slip condition a t  the plate. When transpiration takes place 
the exterior flow (in the sense defined in the previous paragraph) finds itself in a 
state of relatively low temperature, as one can see by consulting figure 4, but it is 
a t  the same time removed from the constraint of no slip and is actually being 
dragged upwards by the interior flow a t  the higher values of M .  These two 
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contrary influences seem to conspire in the present instance to cancel one another 
out. From the portion of the curve of F'(7) at an M of unity which is sketched in 
figure 2 it  is clear that FLaX and F'(vF=,,) coincide for an M value slightly less than 
one. For smaller M values the inner flow actually exerts a small restraining shear 
stress on the outer flow; this fact combined with the reduced temperatures in the 
outer flow for all M values (consult the locus H(qs,,,) on figure 3) is responsible for 
the slight initial reductions in F(o0) as M increases from zero. 

6. Completion of the first outer solutions 
With the information available from the first inner solutions it is now possible 

to evaluate those components of the first significant outer solutions which have 
a( 1) gauge factors [see equation (12)]. In  particular, matching of the stream func- 
tions shows that 

g $ ) ( E )  = €4; I ~ ( ' ) ( x  > 0 , O )  = C ~ A ~ ( ~ X ) % P ( O ~ ) .  (35) 

The value of the temperature in Di is 1 +AH(?)  to first order; since H ( 7 )  -+ 0 
like exp ( - constant x ?) as 7 -+ co it follows from matching that gp)(c) is o(e4") 
for all n 2 2, with a similar conclusion for gF)(e) following from (5). It is inferred, 
ignoring exponentially small terms, that 6' = 1 = p in Di and the outer flow, 
which is induced by the presence of the natural convective boundary layer in Do, 
is of the constant-temperature incompressible type. It can now be deduced that 

g p ( E )  = €4 = g, (1) (4; g g w  = €9 (36) 

and also that the flow in Do is irrotational. 

condition in (35) supplemented by the symmetry requirement 
Solutions for the complex-conjugate velocity, iwcl), which satisfy the 

p ( X  < 0,O) = 0, (37) 

can be obtained by the usual complex-variable methods, and this has been done 
by Yang & Jerger (1964) for the no-blowing case, M = 0. (In fact Yang & Jerger 
were primarily interested in the finite and not the semi-infinite flat plate, but 
solutions for the latter problem appear as a special case of their analysis; the 
work of Yang & Jerger will be referred to again in the next section in another 
context.) The fact that F(m) varies so little for M 2 0 means that not only the 
form of a(')- iw(l) but also its magnitude is effectively unaltered, whether blowing 
takes place or not. 

A picture of the flow induced in Do by the presence of the hot semi-infinite plate 
and the hot transpired gas is provided by sketching one or two streamlines from 
the solution for ?,W (which incidentally is not given by Yang & Jerger). It easily 
follows that 

= +A (x2 + x2)% sin {$ tan-1 ( X / X )  + $711, (38) 

where A = 3C&A*F(w), (39) 

(;I €+[U(l)2 + W(lt2]& = d A ( x 2  + 22) -6 ,  (40) 

and figure 5 illustrates the results, with the gas speed written as q, where 
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FIGURE 5 .  Streamlines of the induced outer-domain flow. 

the streamline number S being defined as 

S = 3(24)@(1’/4A. (41) 

Attention is drawn particularly to the existence of a maximum speed and 
hence minimum pressure on any streamline (the locus of such points is indicated 
on the figure) and also to the large lateral extent of the ‘catchment area’ for 
material which finds its way into the boundary layer in Di. When viewed from 
Do the appearance of the plate as a line of sinks is clear, as is the fact that this 
sink-like property of the plate induces a positive slip velocity along the solid 
surface. It is worth reiterating that the situation illustrated in figure 5, namely a 
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view of the flow from the domain Do, is the same whether transpiration through 
the plate is taking place or not. 

7. Second terms in the inner solutions 
The existence of an induced slip velocity at the plate surface in Do means that 

is it  necessary to proceed to another term in the inner series in order to see how 
this modifies the velocity and temperature profiles in Di. Since the slip velocity 
has the value 

where A is defined in (39), it follows from matching that the stream function in Di 
could be written in the form of (14) with 

E h p ( X  > 0) 0 )  = s3A(4x)-f, (42) 

G$)(€) = 6 ,  (43) 

Y ~ ) ( x , Z - + C O ) + A ( ~ X ) - ~  (44) 

(note the form of Y(l) in (17) and the final sentence in § 4). Since p is now known 
to be of O(e) in Do it  can also be deduced that ap/ax must be of this same order 
in Di. 

Now it is evident that re-writing terms such as puaulax, for example, in the 
form pua[puO]/ax by making use of (5) permits all of the conservation equations 
(1)-(4) to be expressed in terms of @ [see equation (S)], 8 andp alone. If an exact 
stretched stream function Y is defined so that 

@ = €+Y, (45) 

(46) 

Yz8x-Yx8Z  = Pr-1(ABZ),+O(€q, (47)  

these equations can be written in the inner domain Di in the forms 

yz(@J?z)z! - y z ! v y Z ) z  = (P(dYz)z)z + 1 - 8-I + o(&, 

plus the result that p is constant up t o  and including terms of O(s4). The error 
estimates in (46) and (47), and in the result for p ,  make use of the information 
which has been culled so far from the analysis, and the system now permits quick 
progress to the desired second approximations in Di without the sacrifice of any 
accuracy in the representation of a variable-property system. This comes about 
because it is possible to define a new, ‘exact’, Howarth-Dorodnitsyn type of 
normal co-ordinate Y such that 

and in terms of which (46) and (47) become 

Y,Yz!,-Yz!Y,, = CY,,,+d- 1+0(€6) ,  (49) 

yP,e,-yZoa = ( C / P ~ ) O , , + ~ ( ~ ~ .  (50)  

The quotients,@ and h/8 which appear on the right-hand sides of the transformed 
equations in x, ??/ co-ordinates are of course equal to pp and ph, and these have 
been given the constant value C in accordance with the work in 94. 
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Y ( x ,  2 :  6) - Y(l)(x, Y) + S W 2 ) ( X ,  Y), (51) 

O(x, 2 :  .) N W ( x ,  Y) -t €B@(2)(X, Y), (52) 

and it readily transpires that the solutions for Y(l) and W a s  functions of x and Y, 
rather than of x and Y ,  follow a t  once from the previous results by writing Y in 
place of Y .  If 6’ in (48) is given the value W1) then Y and Y are identical, since 
R W @ )  is equal to one; in view of (52 ) ,  Y and Y will not generally remain equal to 
second order and 00 and Y@) must now be found. 

There is no need to write out the partial differential equations and boundary 
conditions for Y@) and in full; suffice it to say that they are linear equations 
with coefficients which depend on Y(l) and @(l) and are such that, in the present 
case of the semi-infinite flat plate, the similitudes 

Appropriate forms for the inner series to second order are 

exist, where 7 here is exactly the same as 7 in (19) except that Y is replaced by Y. 
Substitution of the solutions for Y(I)(x, Y) and W ( x ,  Y) into the equation for 

W), together with use of (43) and (54), shows that the ordinary differential 
equation for H@) is homogeneous with homogeneous boundary conditions and 

(55) 
that, in consequence, 

Thus the first-order result for 6’ in the inner domain is actually correct to within 
an error which is certainly o ( d )  for the semi-infinite flat plate, and this fact has. 
already been noted by Yang & Jerger in their investigation of the finite-length- 
plate problem. Of course these authors go on to evaluate the effects of finiteness 
of the plate’s chord (all for the case M = 0) and a brief word about their work is 
necessary here. Yang & Jerger assume (i) that the density is constant everywhere 
except in the term I - p  on the right-hand side of ( 2 )  (this is the familiar approxi- 
mation in natural-convection theory which has already been referred to in the 
introduction), (ii) that the induced inflow which is represented by the boundary- 
value $(l)(x > 0,O) in (35) actually applies only along the plate chord itself, so. 
that (35) becomes, in the present notation, 

H(2)(7) = 0 = O(”(X,  Y). 

$(‘)(O < x < 1 , O )  = A2(4~)9P(c0), 

7 p ( I  < x, 0) = 0, 

where the plate is presumed to be of unit chord, and finally, (iii) that the fluid 
properties such asp are evaluated at  the reference temperature given by Sparrow 
& Gregg (1958). 

Assumption (ii) follows from the speculation that there will be no inflow into 
the hot wake which exists above the plate and leads to an incompressible outer- 
domain flow which has a complex-conjugate velocity with singular behaviour 
(like In [I - @I) as 5 = x + i z  + 1. Their technique for solving the problem is to 
expand O ( 0  < x < 1, 0) as a power series in xm+t (m = 0,1 ,2 ,  . ..) plus a term in 
x-4 (which is actually the result for a semi-infinite plate) and thence to compute 
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FIGURE 6. Comparison of the measured temperature profiles on a finite flat plate (Schmidt 
& Beckman) with the present theoretical results for a semi-infinite plate for zero blowing, 
namely H(7,);  ql is defined in (57). H(7)  is the solution uncorrected for the ‘Howarth- 
stretching’ and is the one given by Ostrach, for example. Experimental points : 0, x = &; 
0, = 6;  0, = +; a, = -2.. D = 12. 12 1 2 ,  3 

what we have written as Y@)iznd (4x)f W2) as series in xm+% with coefficients which 
are functions of a similarity variable like 7.  Yang & Jerger’s comparisons of their 
results with the profile (temperature and velocity) measurements of Schmidt & 
Beckman (1930) are generally favourable, but it is necessary to make several 
observations about their theory. 

First the result of assumptions (i) and (ii) above is that the similarity co- 
ordinate used by Yang & Jerger is, in present notation, equal to 

&A&/( 4x)%, (56) 

where eref is e in (7) with po and ,uo replaced by their values at Sparrow & Gregg’s 
reference temperature (i.e. To[l + 0*62A] in present notation). Now the correct 
similarity co-ordinate in terms of the normal co-ordinate z, which we shall write 
as ye, follows most readily from (48), (52) and ( 5 5 ) ,  etc., in the form 

where 7 is as given in (19) since Y and 5Y are synonymous to the order of accuracy 
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quoted when the plate is semi-infinite. When the dimensionless temperature dif- 
ference in Di, which is now known to be H ( 7 )  + o(E*), is plotted against rZ (with C 
equal to one) and compared with the experimental results of Schmidt & Beckman 
for M = 0 it can be seen from figure 6 that the present theoretical results for a 
semi-infinite plate are at least as good as, if not slightly bett’er than, Yang & 
Jerger’s theory for a h i t e  flat plate. 

One must admit that the generalized Howarth-Dorodnitsyn transformation 
gives a more accurate representation of the dependence on the normal co-ordinate 
of a quantity like B than can be achieved by use of a reference-temperature co- 
ordinate as in expression (56), if for no other reason than the fact that a result 
equivalent to (56) was arrived at  by Sparrow & Gregg by making eref the ‘best- 
choice ’ average for the evaluation of overall quantities such as heat-transfer 
rate using a theory for gases based on the Howarth-type of transformation. These 
last-mentioned authors confined their attention to overall properties and did not 
use the Howarth transformation in comparisons of detailed temperature and 
velocity profiles; they were also interested only in the f i s t  inner solutions and 
hence in the co-ordinate Y .  The extension of the present theory into the co- 
ordinate system (x, 9’) is not trivial, since it serves to indicate the high order of 
accuracy with which Y can represent dependence on the normal co-ordinate in 
Di. One can now make use of this information to assess behaviour of the second 
approximation to the velocity component u in this same domain. 

The exact result shows that velocity component u is equal to Yq, whence the 
two-term inner series (51), together with (17)  for Y(l) and ( 5 3 )  for W2), shows that 

With result (55) the equation satisfied by F@) is found to be 

(59a)  

W ( 0 )  = 0 = P@)’(O); P(2)(y+m)+-3C4F(oo). (59b) 

p ( 2 ~  + 3 ~ ~ ( 2 ) ”  - p’p(2)’ = 0 

and the boundary conditions are [note, particularly, equation (44)] given by 

If F(2)(7) is written as 3C*P(o0)fo0(~), the functionf,,(y) is precisely the one already 
calculated by Yang & Jerger and so the solution for u in (58), for example, is 
complete for the case 1M = 0. 

Apart from the present interpretations of e and 7 in terms of physical co-ordi- 
nates and quantities, (58) is precisely the limit of Yang & Jerger’s results for a 
semi-infinite flat plate and as such represents nothing new. However, as we have 
already seen with the temperature, the proper interpretations of 8 and 7 are 
significant when comparisons with the experimental results of Schmidt & Beck- 
man are made. The combination of (57) and (58) (with Cgiven the value unity) is 
used to draw the curves in figures 7 (a)-(e) and, consulting Yang & Jerger’s paper, 
it  can be seen once again that the present results for the semi-inJinite plate are at 
least as good as the results for the jinite plate a t  reproducing the measurements. 
Figures 7 ( d )  and ( e )  do suggest that there may be some effect due to the wake, 
since the second-order theory for a semi-infinite plate is apparently not so good on 
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FIGURE 7. Comparison of the measured velocity profiles (open symbols) on a flat plate of 
unit chord (Schmidt & Beckman) a t  five chordwise stations with the present theoretical 
results (CIIPVBS) for a semi-infinite plate for zero blowing; vZ is defined in (57). -, one 
term; -, two terms. (a)  z = +%, ( b )  z = Q, ( c )  z = f ,  (d )  z = +%, ( e )  I(: = ++. 
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the downstream half of the surface, but then the same is true of the theory for a 
finite flat plate. With great respect for the pioneering work of Yang & Jerger on 
the problem of a finite flat plate one must be tempted at  this time to bring in a 
verdict of ‘not proven’. 

If the present theory is used for comparisons with measurements when M 
exceeds zero, then the contribution to vz in (57) which comes from the integral of 
H ( q )  will, as can be appreciated from figure 3, prove to be very large indeed. 

The writer is greatly indebted to Dr James Eninger, TRW Systems, Redondo 
Beach, California, who very kindly supplied him with the numerical data for 
figures 2, 3 and 4. 
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